Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Neurosurg Spine ; 40(3): 312-323, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039536

RESUMO

OBJECTIVE: Surgery for spinal deformity has the potential to improve pain, disability, function, self-image, and mental health. These surgical procedures carry significant risk and require careful selection, optimization, and risk assessment. Epigenetic clocks are age estimation tools derived by measuring the methylation patterns of specific DNA regions. The study of biological age in the adult deformity population has the potential to shed insight onto the molecular basis of frailty and to improve current risk assessment tools. METHODS: Adult patients who underwent deformity surgery were prospectively enrolled. Preoperative whole blood samples were used to assess epigenetic age and telomere length. DNA methylation patterns were quantified and processed to extract 4 principal component (PC)-based epigenetic age clocks (PC Horvath, PC Hannum, PC PhenoAge, and PC GrimAge) and the instantaneous pace of aging (DunedinPACE). Telomere length was assessed using both quantitative polymerase chain reaction (telomere to single gene [T/S] ratio) and a methylation-based telomere estimator (PC DNAmTL). Patient demographic and surgical data included age, BMI, American Society of Anesthesiologists Physical Status Classification System class, and scores on the Charlson Comorbidity Index, adult spinal deformity frailty index (ASD-FI), Edmonton Frail Scale (EFS), Oswestry Disability Index, and Scoliosis Research Society-22r questionnaire (SRS-22r). Medical or surgical complications within 90 days of surgery were collected. Spearman correlations and beta coefficients (ß) from linear regression, adjusted for BMI and sex, were calculated. RESULTS: Eighty-three patients were enrolled with a mean age of 65 years, and 45 were women (54%). All patients underwent posterior fusion with a mean of 11 levels fused and 33 (40%) 3-column osteotomies were performed. Among the epigenetic clocks adjusted for BMI and sex, DunedinPACE showed a significant association with ASD-FI (ß = 0.041, p = 0.002), EFS (ß = 0.696, p = 0.026), and SRS-22r (ß = 0.174, p = 0.013) scores. PC PhenoAge showed associations with ASD-FI (ß = 0.029, p = 0.028) and SRS-22r (ß = 0.159, p = 0.018) scores. PC GrimAge showed associations with ASD-FI (ß = 0.029, p = 0.037) and SRS-22r (ß = 0.161, p = 0.025) scores. Patients with postoperative complications were noted to have shorter telomere length (T/S 0.790 vs 0.858, p = 0.049), even when the analysis controlled for BMI and sex (OR = 1.71, 95% CI 1.07-2.87, p = 0.031). CONCLUSIONS: Epigenetic clocks showed significant associations with markers of frailty and disability, while patients with postoperative complications had shorter telomere length. These data suggest a potential role for aging biomarkers as components of surgical risk assessment. Integrating biological age into current risk calculators may improve their accuracy and provide valuable information for patients, surgeons, and payers.


Assuntos
Fragilidade , Adulto , Humanos , Feminino , Idoso , Masculino , Fragilidade/genética , Estudos Retrospectivos , Complicações Pós-Operatórias/epidemiologia , Medição de Risco , Biomarcadores , Envelhecimento/genética , Epigênese Genética/genética
2.
Pediatr Obes ; 18(12): e13082, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37873898

RESUMO

OBJECTIVE: To examine changes in leukocyte telomere length (LTL) during and after a behavioural weight control program for children with obesity. METHODS: We measured LTL among a cohort of 158 children 8-12 years of age with a body mass index greater than or equal to the 95th percentile for age and sex. Children were 55% female, 29% white, 52% Latinx, 8% Asian and 11% Pacific Islander, other or multiethnic. All children participated in a 6-month, family-based, group behavioural weight control program and were assessed before treatment, after treatment and 1 year after the end of treatment. To test the sample population slope of LTL over the intervention and maintenance time periods, we fit spline mixed-effect regression models. RESULTS: LTL increased an average of 0.09 T/S units per year (95% confidence interval [CI] 0.04 to 0.13; p = 0.0001) during the weight control program intervention period, followed by an average decline of -0.05 T/S units per year (95% CI -0.08 to -0.03; p < 0.0001) during the 1 year of follow-up after the completion of the intervention. Among 26 social, psychological, behavioural and physiological factors we examined, we did not find any predictors of these changes. CONCLUSIONS: LTL increased in response to a behavioural weight control program among children with obesity, suggesting an impact on biological health and cellular aging from participation in a behavioural weight control intervention. LTL may be a useful biomarker for assessing changes in response to behavioural interventions.


Assuntos
Leucócitos , Obesidade , Humanos , Feminino , Criança , Masculino , Obesidade/terapia , Índice de Massa Corporal , Terapia Comportamental , Telômero
3.
J Neurosurg Spine ; 38(3): 331-339, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461827

RESUMO

OBJECTIVE: Risk stratification is a critical element of surgical planning. Early tools were fairly crude, while newer instruments incorporate disease-specific elements and markers of frailty. It is unknown if discrepancies between chronological and cellular age can guide surgical planning or treatment. Telomeres are DNA-protein complexes that serve an important role in protecting genomic DNA. Their shortening is a consequence of aging and environmental exposures, with well-established associations with diseases of aging and mortality. There are compelling data to suggest that telomere length can provide insight toward overall health. The authors sought to determine potential associations between telomere length and postoperative complications. METHODS: Adults undergoing elective surgery for spinal deformity were prospectively enrolled. Telomere length was measured from preoperative whole blood using quantitative polymerase chain reaction and expressed as the ratio of telomere (T) to single-copy gene (S) abundance (T/S ratio), with higher T/S ratios indicating longer telomere length. Demographic and patient data included age, BMI, and results for the following rating scales: the Adult Spinal Deformity Frailty Index (ASD-FI), Oswestry Disability Index (ODI), Scoliosis Research Society-22r (SRS-22r), American Society of Anesthesiology (ASA) classification, and Charlson Comorbidity Index (CCI). Operative and postoperative complication data (medical or surgical within 90 days) were also collected. RESULTS: Forty-three patients were enrolled, including 31 women (53%), with a mean age of 66 years and a mean BMI of 28.5. The mean number of levels fused was 11, with 21 (48.8%) combined anterior-posterior approaches. Twenty-two patients (51.2%) had a medical or surgical complication. Patients with a postoperative complication had a significantly lower T/S ratio (0.712 vs 0.813, p = 0.008), indicating shorter telomere length, despite a mild difference in age compared with patients without a postoperative complication (68 vs 63 years, p = 0.069). Patients with complications also had higher CCI scores than patients without complications (2.3 vs 3.8, p = 0.004). There were no significant differences in sex, BMI, ASD-FI score, ASA class, preoperative ODI and SRS-22r scores, number of levels fused, or use of three-column osteotomies. In a multivariate model including age, frailty, ASA class, use of an anterior-posterior approach, CCI score, and telomere length, the authors found that short telomere length was significantly associated with postoperative complications. Patients whose telomere length fell in the shortest quartile had the highest risk (OR 18.184, p = 0.030). CONCLUSIONS: Short telomere length was associated with an increased risk of postoperative complications despite only a mild difference in chronological age. Increasing comorbidity scores also trended toward significance. Larger prospective studies are needed; however, these data provide a compelling impetus to investigate the role of biological aging as a component of surgical risk stratification.


Assuntos
Fragilidade , Escoliose , Humanos , Adulto , Feminino , Idoso , Pessoa de Meia-Idade , Projetos Piloto , Seguimentos , Escoliose/cirurgia , Complicações Pós-Operatórias , Qualidade de Vida , Estudos Retrospectivos
4.
PeerJ ; 9: e11394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34141465

RESUMO

OBJECTIVE: Studies of multiple species have found that adverse early life experiences, including childhood trauma and maternal separation, can result in accelerated telomere shortening. The objective of this study was to determine if premature separation from the mother affected telomere length in domestic kittens (Felis catus). Subjects were 42 orphaned kittens and 10 mother-reared kittens from local animal rescue groups and shelters. DNA was extracted from whole blood collected from kittens at approximately 1 week and 2 months of age. Telomere length was assessed by qPCR (quantitative polymerase chain reaction) from a total of 86 samples and expressed as a ratio of telomere PCR relative to a single copy gene PCR (T/S). RESULTS: A generalized linear mixed model found there were no detectable differences in telomere length based on survival (F 1, 76.2 = 3.35, p = 0.07), orphan status (F 1, 56.5 = 0.44, p = 0.51), time point (F 1, 43.5 = 0.19, p = 0.67), or the interaction between orphan status and time (F 1, 43.5 = 0.86, p = 0.36). Although in other species telomere shortening is commonly associated with aging, even early in life, we did not find evidence for telomere shortening by two months of age. Our results suggest that the experience of early maternal separation in domestic cats who are subsequently hand-reared by humans does not accelerate telomere shortening compared to mother-reared kittens, at least in the first few months of life.

5.
Stress ; 23(5): 597-606, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32063089

RESUMO

Dysregulation of the stress response can occur early in life and may be affected by nutrition. Our objective was to evaluate the long-term effect of nutritional supplementation during gestation and early childhood on child cortisol and buccal telomere length (a marker of cellular aging) at 4-6 years of age. We conducted a follow-up study of children born to women who participated in a nutritional supplementation trial in Ghana. In one group, a lipid-based nutrient supplement (LNS) was provided to women during gestation and the first 6 months postpartum and to their infants from age 6 to 18 months. The control groups received either iron and folic acid (IFA) during gestation or multiple micronutrients during gestation and the first 6 months postpartum, with no infant supplementation. At age 4-6 years, we measured hair cortisol, buccal telomere length, and salivary cortisol before and after a stressor. Salivary cortisol was available for 364 children across all three trial arms and hair cortisol and telomere length were available for a subset of children (n = 275 and 278, respectively) from the LNS and IFA groups. Telomere length, salivary cortisol, and hair cortisol did not differ by supplementation group. Overall, these findings suggest that nutritional supplementation given during gestation and early childhood does not have an effect on child stress response or chronic stress in children at 4-6 years. Trial registration: ClinicalTrials.gov Identifier NCT00970866.Lay SummaryThis study addressed a research gap about whether improved nutrition during pregnancy and early childhood impacts telomere length and cortisol in preschool children. There was no difference in child telomere length or cortisol between two trial arms of a nutritional supplementation trial that began during pregnancy. The research outcomes indicate lipid-based nutrient supplements, a relatively new form of supplementation, do not have an effect on markers of stress or cellular aging measured in later childhood.


Assuntos
Hidrocortisona , Telômero , Adolescente , Criança , Pré-Escolar , Suplementos Nutricionais , Feminino , Seguimentos , Gana , Humanos , Lactente , Micronutrientes , Gravidez , Estresse Psicológico
6.
Ann Neurol ; 86(5): 671-682, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31486104

RESUMO

OBJECTIVE: To assess whether biological aging as measured by leukocyte telomere length (LTL) is associated with clinical disability and brain volume loss in multiple sclerosis (MS). METHODS: Adults with MS/clinically isolated syndrome in the University of California, San Francisco EPIC cohort study were included. LTL was measured on DNA samples by quantitative polymerase chain reaction and expressed as telomere to somatic DNA (T/S) ratio. Expanded Disability Status Scale (EDSS) and 3-dimensional T1-weighted brain magnetic resonance imaging were performed at baseline and follow-up. Associations of baseline LTL with cross-sectional and longitudinal outcomes were assessed using simple and mixed effects linear regression models. A subset (n = 46) had LTL measured over time, and we assessed the association of LTL change with EDSS change with mixed effects models. RESULTS: Included were 356 women and 160 men (mean age = 43 years, median disease duration = 6 years, median EDSS = 1.5 [range = 0-7], mean T/S ratio = 0.97 [standard deviation = 0.18]). In baseline analyses adjusted for age, disease duration, and sex, for every 0.2 lower LTL, EDSS was 0.27 higher (95% confidence interval [CI] = 0.13-0.42, p < 0.001) and brain volume was 7.4mm3 lower (95% CI = 0.10-14.7, p = 0.047). In longitudinal adjusted analyses, those with lower baseline LTL had higher EDSS and lower brain volumes over time. In adjusted analysis of the subset, LTL change was associated with EDSS change over 10 years; for every 0.2 LTL decrease, EDSS was 0.34 higher (95% CI = 0.08-0.61, p = 0.012). INTERPRETATION: Shorter telomere length was associated with disability independent of chronological age, suggesting that biological aging may contribute to neurological injury in MS. Targeting aging-related mechanisms is a potential therapeutic strategy against MS progression. ANN NEUROL 2019;86:671-682.


Assuntos
Esclerose Múltipla , Telômero/metabolismo , Adulto , Envelhecimento/fisiologia , Senescência Celular/fisiologia , Estudos de Coortes , Estudos Transversais , Avaliação da Deficiência , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Telômero/patologia , Homeostase do Telômero/fisiologia
7.
Psychoneuroendocrinology ; 99: 271-278, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30343983

RESUMO

Research in the last decade has explored the length of telomeres, the protective ends of eukaryotic chromosomes, as a biomarker for the cumulative effects of environmental exposures and life experiences as well as a risk factor for major diseases. With a growing interest in telomere biology across biomedical, epidemiological and public health research, it is critical to ensure that the measurement of telomere length is performed with high precision and accuracy. Of the several major methods utilized to determine telomere length, quantitative PCR (qPCR) remains the most cost-effective and suitable method for large-scale epidemiological and population studies. However, inconsistencies in recent reports utilizing the qPCR method highlight the need for a careful methodological analysis of each step of this process. In this review, we summarize each critical step in qPCR telomere length assay, including sample type selection, sample collection, storage, processing issues and assay procedures. We provide guidance and recommendations for each step based on current knowledge. It is clear that a collaborative and rigorous effort is needed to characterize and resolve existing issues related to sample storage, both before and after DNA extraction, as well as the impact of different extraction protocols, reagents and post extraction processing across all tissue types (e.g. blood, saliva, buccal swabs, etc.) to provide the needed data upon which best practices for TL analyses can be agreed upon. Additionally, we suggest that the whole telomere research community be invited to collaborate on the development and implementation of standardized protocols for the assay itself as well as for reporting in scientific journals. The existing evidence provides substantial support for the continuation of telomere research across a range of different exposures and health outcomes. However, as with any technological or methodologic advance in science, reproducibility, reliability and rigor need to be established to ensure the highest quality research.


Assuntos
Reação em Cadeia da Polimerase em Tempo Real/métodos , Manejo de Espécimes/métodos , Homeostase do Telômero/fisiologia , Humanos , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência , Reprodutibilidade dos Testes , Manejo de Espécimes/normas , Telômero/fisiologia , Homeostase do Telômero/genética
8.
Mol Cell Biol ; 36(14): 1908-19, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27161319

RESUMO

Telomeres cap the ends of chromosomes, protecting them from degradation and inappropriate DNA repair processes that can lead to genomic instability. A short telomere elicits increased telomerase action on itself that replenishes telomere length, thereby stabilizing the telomere. In the prolonged absence of telomerase activity in dividing cells, telomeres eventually become critically short, inducing a permanent cell cycle arrest (senescence). We recently showed that even early after telomerase inactivation (ETI), yeast cells have accelerated mother cell aging and mildly perturbed cell cycles. Here, we show that the complete disruption of DNA damage response (DDR) adaptor proteins in ETI cells causes severe growth defects. This synthetic-lethality phenotype was as pronounced as that caused by extensive DNA damage in wild-type cells but showed genetic dependencies distinct from such damage and was completely alleviated by SML1 deletion, which increases deoxynucleoside triphosphate (dNTP) pools. Our results indicated that these deleterious effects in ETI cells cannot be accounted for solely by the slow erosion of telomeres due to incomplete replication that leads to senescence. We propose that normally occurring telomeric DNA replication stress is resolved by telomerase activity and the DDR in two parallel pathways and that deletion of Sml1 prevents this stress.


Assuntos
Saccharomyces cerevisiae/crescimento & desenvolvimento , Telomerase/deficiência , Telômero/genética , Pontos de Checagem do Ciclo Celular , Dano ao DNA , Instabilidade Genômica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/genética , Encurtamento do Telômero
9.
Cell ; 160(5): 928-939, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25723167

RESUMO

Telomerase is required for long-term telomere maintenance and protection. Using single budding yeast mother cell analyses we found that, even early after telomerase inactivation (ETI), yeast mother cells show transient DNA damage response (DDR) episodes, stochastically altered cell-cycle dynamics, and accelerated mother cell aging. The acceleration of ETI mother cell aging was not explained by increased reactive oxygen species (ROS), Sir protein perturbation, or deprotected telomeres. ETI phenotypes occurred well before the population senescence caused late after telomerase inactivation (LTI). They were morphologically distinct from LTI senescence, were genetically uncoupled from telomere length, and were rescued by elevating dNTP pools. Our combined genetic and single-cell analyses show that, well before critical telomere shortening, telomerase is continuously required to respond to transient DNA replication stress in mother cells and that a lack of telomerase accelerates otherwise normal aging.


Assuntos
Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Telomerase/metabolismo , Ciclo Celular , Cromossomos Fúngicos/metabolismo , Replicação do DNA , Mitocôndrias/metabolismo , Ribonucleosídeo Difosfato Redutase/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo
10.
Genes Dev ; 22(7): 854-9, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18334620

RESUMO

The kinases ATM and ATR (Tel1 and Mec1 in the yeast Saccharomyces cerevisiae) control the response to DNA damage. We report that S. cerevisiae Tel2 acts at an early step of the TEL1/ATM pathway of DNA damage signaling. We show that Tel1 and Tel2 interact, and that even when Tel1 protein levels are high, this interaction is specifically required for Tel1 localization to a DNA break and its activation of downstream targets. Computational analysis revealed structural homology between Tel2 and Ddc2 (ATRIP in vertebrates), a partner of Mec1, suggesting a common structural principle used by partners of phoshoinositide 3-kinase-like kinases.


Assuntos
Quebras de DNA de Cadeia Dupla , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Imunoprecipitação da Cromatina , Biologia Computacional , Dano ao DNA , Ativação Enzimática , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/genética
11.
Mol Biol Cell ; 15(4): 1623-34, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14742705

RESUMO

Mutation of the template region in the RNA component of telomerase can cause incorporation of mutant DNA sequences at telomeres. We made all 63 mutant sequence combinations at template positions 474-476 of the yeast telomerase RNA, TLC1. Mutants contained faithfully incorporated template mutations, as well as misincorporated sequences in telomeres, a phenotype not previously reported for Saccharomyces cerevisiae telomerase template mutants. Although growth rates and telomere profiles varied widely among the tlc1 mutants, chromosome separation and segregation were always aberrant. The mutants showed defects in sister chromatid separation at centromeres as well as telomeres, suggesting activation of a cell cycle checkpoint. Deletion of the DNA damage response genes DDC1, MEC3, or DDC2/SML1 failed to restore chromosome separation in the tlc1 template mutants. These results suggest that mutant telomere sequences elicit a checkpoint that is genetically distinct from those activated by deletion of telomerase or DNA damage.


Assuntos
Proteínas Fúngicas/genética , Saccharomyces cerevisiae/enzimologia , Telômero/ultraestrutura , Sequência de Bases , Southern Blotting , Divisão Celular , Cromossomos/ultraestrutura , Clonagem Molecular , Dano ao DNA , Proteínas Fúngicas/metabolismo , Deleção de Genes , Genótipo , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Mutação , Fenótipo , Plasmídeos/metabolismo , Proteínas Serina-Treonina Quinases , RNA/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Troca de Cromátide Irmã , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...